Sheo B. Singh, Weiguo Liu, Xiaohua Li, Tom Chen, Ali Shafiee, Deborah Card, George Abruzzo, Amy Flattery, Charles Gill, John R. Thompson, Mark Rosenbach, Sarah Dreikorn, Viktor Hornak, Maria Meinz, Rosemarie Kelly, Janet C. Onishi

Merck Research Laboratories, Rahway, 07065 New Jersey

Abstract

Ilicicolin H is a polyketide -Non Ribosomal Peptide Synthase (NRPS)-natural product isolated from Gliocadium roseum which exhibits potent and broad spectrum antifungal activity, with sub micro g/mL MICs against Candida spp, Aspergillus fumigatus and Cryptococcus spp. It showed a novel mode of action, potent inhibition (IC50 2-3 ng/mL) of the mitochondrial cytochrome bc1 reductase, and over 1000-fold selectivity relative to rat liver cytochrome bc1 reductase. Ilicicolin H exhibited in vivo efficacy in murine models of Candida albicans and Cryptococcus neoformans infections, but efficacy may have been limited by high plasma protein binding. Systematic structural modification of ilicicolin H was undertaken to understand the structural requirement for the antifungal activity. The details of the biological activity of ilicicolin H and structural modification of some of the key parts of the molecule and resulting activity of the derivatives are discussed. These data suggest that the β-keto group is critical for the antifungal activity.

Introduction

Infections caused by pathogenic fungi (e.g., Candida albicans and Aspergillus fumigatus) are life-threatening particularly to immunocompromised populations. Three main herapeutic options exist for the treatment of such infections including azoles (e.g. fluconazole)2 macrocyclic polyenes (e.g., amphotericin)3 and candins (e.g., caspofungin micafungin and anidulafungin).4 Each treatment option has limitations to its utility thus creating a need for new antifungal agents.

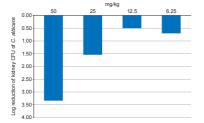
Results and Discussion

Identification of Ilicicolin H

- Screening Assay: Whole cell wild type Candida albicans
- · Isolated from Gliocadium roseum by extract screening
- . Structure was confirmed by NMR and Mass spectral analysis · Originally isolated from Cylindrocladium ilicicola in 1971
- No antifungal spectrum was reported

Antifungal Spectrum of Ilicicolin H

Ilicicolin H shows broad spectrum antifungal activity with MIC ranges of 0.04-0.31 µg/mL against C. albicans including fluconazole resistant strains. It showed potent activities against Cryptococcus neoformans and Aspergillus fumigatus (Table 1).


Table 1. Antifungal spectrum (MIC, µg/mL) of ilicicolin H (1) and clinical comparators

			MIC (µg/mL)	
		Ilicicolin H Caspofungin		Amphotericin B	Fluconazole
Strain	Strain number	24 hr	24 hr	24 hr	24 hr
Candida albicans	MY 1055	0.04	0.25	0.25	0.5
Candida albicans	MY 2301	0.31	0.5	0.5	>64
Candida albicans	SC 53124	0.04	NT	NT	NT
Candida glabrata	CLY 574	0.63	0.5	0.4	>64
Candida glabrata	MY 1381	1.3	0.5	0.5	8
Candida guilliermondii	CLY 308	2.5	0.5	0.25	4
Candida guilliermondii	CLY 346	5	1	0.13	4
Candida krusei	CLY 549	0.01	1	0.5	16
Candida Iusitaniae	MY 1396	3.1	0.25	0.06	1
Candida parapsilosis	ATCC 22019	0.16	1	0.13	2
Aspergillus flavus	MF 383	>100	>64	1	>64
Aspergillus fumigatus	MF 5668	0.08	64	0.5	>64
		48 hr	48 hr	48 hr	48 hr
Cryptococcus tropicalis	MY 1012	0.1	0.25	2	>64
Cryptococcus neoformans	H 99	1.56	NT	NT	NT
Cryptococcus neoformans	MY 2061	0.2	16	0.13	2

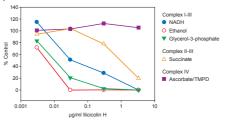
while the antifungal activity was besetmined using NCCLS protocols. Antifungal activity of licicolin H was determined in glycerol based is while the antifungal activity of comparation antifungals was determined in glycose based media. All MICs were read after 24 hr, at 37°C except fc C. neoformans and C. tropicals which were read after 40 hr.

In vivo Efficacy:

Figure 1. In vivo activity of ilicicolin H in disseminated C. albicans

Dosed twice daily orally in 10% aqueous DMSO for 2 days. DBA/2N mice were challenged i.v. with Candida albicans MY1055 at 5.4 x 10⁴.

C. albicans (po, bid): ED₉₀ = 15.45 mg/kg/dose; ED₉₉ = 30.75 mg/kg/dose C. albicans (iv, tid): ED₉₀ = 22.3 mg/kg/day Cryptococcus neoformans (speen model, ip): Jone log cfu/g spleen


Table 2. MIC of ilicicolin H with different carbon source

	MIC μg/ml		Concentration (µg/ml)	
	Glucose	Glycerol	to inhibit whole cell O ₂ consumption 100%	
S. cerevisiae MY 2141	>50.0	0.012	0.003	
C. albicans MY 1055	>50.0	0.025	0.003	

Table 3. Effect of ilicicolin H on substrate dependent rates of oxygen

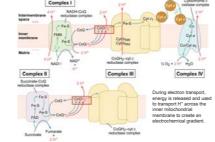

ouplou militorionana nom or coro			
IC ₅₀ (µg/ml)			
0.08			
0.008			
0.02			
1.0			
10.0			

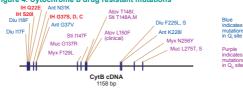
Figure 2. Graphical representation of oxygen comsumtion rate by

- · Antifungal activity of ilicicolin H dependent on carbon source in the test media.
- · Respiration inhibited in C. albicans and S. cerevisiae
- . Measurements of the effect of ilicicolin H on substrate dependent rates of oxygen consumption by coupled mitochondria from S. cerevisiae MY 2141 revealed that complex I - III was the most sensitive complex in the respiratory
- Inhibition of complex I III accounted for by inhibition of NADH:cytochrome c oxidoreductase; IC₅₀ of 0.8 and 1.0 ng/mL (1.85 nM and 2.31 nM); C. albicans and S. cerevisiae, respectively.
- Ilicicolin H was shown to inhibit the center N (Qn site, also called Qi site) of the cytochrome bc1 complex with an IC50 of 3-5 nM in the ubiquinol:cvtochrome c reductase of S. cerevisiae.

Figure 3. Yeast electron transpor

Selection of ilicicolin H resistant C. albicans mutants:

- Isolated with a frequency of 10⁻⁷
- · Comared to WT:
- Growth rates varied between each mutant and WT
- MICs were 250-1000-fold higher
- Not cross-resistant to myxothiazol and antimycin
- NADH:cytochrome c reductase: IC 50 8-66-fold higher Ubiquinol:cytochrome c reductase IC 50 12-222-fold higher
- . C. albicans mutants showed five single amino acid changes at four sites in the cytochrome b gene identical to S. cerevisiae mutations (Table 3)
- G37 mutations (G37D, G37S, D37C) most frequent in both yeast strains (Table 3)


Table 3. Cytochrome b mutations generating ilicicolin H resistance in S. cerevisiae and C. albicans

	Mutations		
Position	S. cerevisiae	C. albicans	
20	ND S20L (1) S20T (1)	S20I (1) ND ND	
22	Q22E (3) Q22T (2)	Q22E (2) ND	
37	ND G37D (2) G37S (2)	G37C (3) G37D (4) G37S (6)	
198	L198F (1)	ND	

Table 4. Biological profile of *C. albicans* llicicolin H resistant mutants Stania Fold shapes in Ministella II Cod of each Counth

Strain	Fold change in ilicicolin n		Cyt C1 peak		Growth		
(cyt b aa substitution)	*MIC	*NADH: cyt c reductase IC ₅₀	*Ubiquinol:cyt c reductase IC ₅₀		1 μg/ml ilicicolin H	Glycerol	Glucose
Parent	1	1	1	-	-	Average	Average
Ca2 (G37D)	500	8	222	+	-	♦Slow lag	Average
Ca3 (G37D)	250	13	12	+	-	♦Slow lag	Average
Ca9 (G37D)	250	13	20	+	-	Slow	Average
Ca7 (G37D)	250	21	30	+	-	♦Slow lag	Average
Ca10 (S20I)	250	33	17	+	-	Slow	◆Slow lag
Ca15 (G37S)	500	8	23	+	-	Average	Fast
Ca5 (G37S)	500	20	12	+	-	Average	Fast
Ca8 (G37S)	500	25	25	+	-	Average	Slow-Ave
Ca4 (G37S)	500	25	12	+	-	Fast	Fast
Ca6 (G37S)	500	35	26	+	-	Fast	Fast
Ca12 (Q22E)	500	50	128	+	+	Average	Fast
Ca16 (Q22E)	500	33	89	+	+	Average	Fast
Ca14 (G37S)	500	33	111	+	+	Fast	Fast
Ca1 (G37C)	1000	41	23	+	+	Fast	Fast
Ca11 (G37C)	1000	66	26	+	+	Fast	Fast
Ca13 (G37C)	500	66	47	+	+	Fast	Fast

Figure 4. Cytochrome b drug resistant mutations

Fungal Specificity:

Ilicicolin H showed exquisite NADH:cytochrome c oxidoreductase specificity for C. albicans enzyme compared to rat or rhesus liver enzymes.

Table 5. NADH:cytochrome c oxidoreductase specificity of ilicicolin H and

	NADH:cytochrome c oxidoreductase IC ₅₀ (nM)		
	Ilicicolin H	Antimycin	
C. albicans	1.8	1.1	
Rat liver	3464.0	1.1	
Rhesus liver	1154.0	0.2	

Selectivity rationale:

- · Differences due to differences in ubiquinol isoprene side chains between fungal (n = 4-6) and mammalian (n = 9-10) systems
- · Differences in sequence homology Qi-site amino acids
- 76% identity and 90% similarity (S. cerevisiae vs C. albicans)
- 51% identity and 72% similarity (S. cerevisiae vs bovine)
- . These differences suggest binding differences of the substrate, ubiquinone and the

Figure 5. Amino acid sequence alignments of cytochrome c Qi site

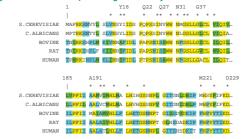
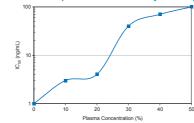
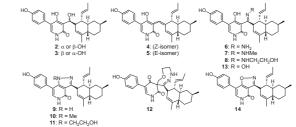




Figure 6. Effect of mouse plasma on ilicicolin H enzyme activity

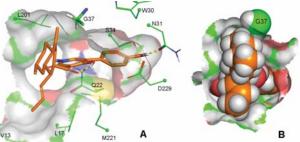

- . Mouse plasma significantly reduced the activity of ilicicolin H
- >1000 fold (>1000 ng/mL) C. albicans MIC shift in the presence of 10% mouse serum
- · Likely responsible for poor in vivo activity

Table 6. C. albicans antifungal and NADH: cytochrome c1 oxidoreductase activity as well as selectivity against rat liver NADH: cytochrome c1 oxido reductase of

Cpd #	MY1055 ^a (MIC, ng/mL)	MY1055 ^b (IC ₅₀ , ng/mL)	Rat ^c (IC ₅₀ , ng/mL)
1	20-40	2-3	2000-5000
2	>5000	12	140
3	>5000	94	375
4	>5000	21	100
5	5000	48	190
6	250	250	NT
7	500	NT	NT
8	500	NT	NT
9	250	3	>1000
10	250	NT	NT
11	250	NT	NT
12	>1000	NT	NT
13	>1000	NT	NT
14	>1000	NT	NT

Figure 7. Binding Model of Ilicicolin H: Homology model based on the crystal structure of S. cerevisiae cytochrome bc1 complex with ubiquinol in Qi site

(A) The binding mode of ilicicolin in C. albicans model. Several key residues are shown as thin sticks. G37 is shown in thicker sticks. (B) To better appreciate the steric constraints of the binding pocket, ilicicolin H is shown in CPK representation. The necessity for a perpendicular orientation of the left- and right-hand side of ilicicolin H is obvious. G37 Cα carbon with hydrogens shown is also displayed in CPK.

Summary and Conclusion

- Ilicicolin H is a natural product produced by an imperfect fungus, Cylindrocladium ilicicola which showed broad spectrum antifungal activity.
- . It imparts its activity by selectively inhibiting fungal cytochrome c1 oxidoreductase activity and respiration
- It demonstrated modest in vivo activity in a Candida and Cryptococcus infection mouse model.
- The in vivo activity was limited by high plasma protein binding. Preliminary medicinal chemistry efforts pointed out the criticality of the β-diketone feature of the molecule and lead to mostly less active or inactive compounds.
- The homology model suggests that its binding mode has some similarities but also differences relative to antimycin binding, and provides valuable insight to SAR and
- These studies open the window for future work on ilicicolin H and the development of new mode of action antifungal agents.
- Details of this work including methods is in press⁷

(2) Zorios, D. I., Bernett, J. E. Update on as case similar to that seen in bacteria? Eur J Clin Microbiol Infect Dis 2008, 27, 327.

(2) Zorios, D. I., Bernett, J. E. Update on acid sentinglas. Serim Respir Cir. Clen Med 2008, 29, 198.

(3) Gallis, H. A., Diew, R. H., Pickard, W. W. Amptolericin S. 30) years of clinical experience. Rev Infect Dis 1990, 12, 308.

(4) Georgopapatikou, N. H. Update on amflungist targeted to the cell wall: flous on beta-1,3-glucan synthase inhibitors. Expert Opin Investig Drugs 2001, 10, 269.

15. Gullerrez-Cirlos, E. B.; Merbitz-Zahradnik, T.; Trumpower, B. L. Inhibition of the Yeast Cytochrome bc1 Complex by Ilicicolin H, a Novel Inhibitor That Acts at the On Site of the bc1 Complex. J Biol Chem 2004, 279.8708.

(6) Ding, M. G.; di Rago, J. P.; Trumpower, B. L. Investigating the Qn site of the cytochrome bc1 complex in Saccharomyces cerevisiae with mutants resistant to illiciocilin H, a novel Qn site inhibitor. J Biol Chem 2006, 281, 36036.

Iniccioni H, a novel On site linhibitor. J Biol Chem 2006, 281, 39039.
(7) Singh, S. B.; Liu, W.; Li, X.; Chen, T.; Shaffee, A.; Card, D.; Abruzzo, G.; Flattery, A.; Gill, A.; Thompson, J. R.; Rosenbach, M.; Dreikom, S.; Hornak, V.; Meirz, M.; Kutz, M. (deceased); Kelly, R.; Onishi, J. C. "Antifungal Spectrum, in vivo Efficacy, and Structure Activity Relationship of licicolin." ACS Med